

V1.7

MEMS DIGITAL ACCELEROMETER

RION AKG392

Technical Manual

RION QUALIFICATION CERTIFICATION

oQuality management system certification: GB/T19001-2016 idt ISO19001:2015 standard (certificate No.: 128101)

o High-tech Enterprise (Certificate No.: GR201844204379)

o CE certification: AT18250EC101483

o Appearance Patent No.: ZL 201830752896.8

o Revision date: 2022-4-12

Note: Product functions, parameters, appearance, etc. will be adjusted as technology upgrades. Please contact our sales to confirm when purchasing.

▶ INTRODUCTION

The AKG392 triaxial accelerometer is a new accelerometer independently developed and produced by Rion Technology applied in wide range of applications, which covers many fields such as vibration testing and impact testing. The product adopts digital interface output with options as RS232/485/TTL. Different address codes can be set, multiple accelerometers can be installed in series for long distance, which is convenient for multi-point measurement and data analysis. Internal FFT processing can directly output the object vibration frequency and speed and displacement, convenient for users to analyze data.

The users can change the sampling frequency according to the actual frequency of the object to improve the frequency measurement accuracy. AKG392 is a single crystal silicon capacitive sensor, which consists of a silicon chip processed by micro-machines, a low-power ASIC for signal adjustment, a microprocessor for storing compensation values, and a temperature sensor. This product has low power consumption, calibration, sturdy structure, and stable output. The new electronic configuration provides solid-state power for reset and protection from over-voltage. The long-term stability and deviation of the scale factor in the full-scale range are typically less than 0.1%. This series of products have the characteristics of sturdy structure, low power consumption, and excellent deviation stability, ensuring stable output reliability.

► MAIN FEATURE

★ Three axes (X, Y, Z)

★ Power supply voltage: 9~36V

★ Working temperature: -40°C ~ +85°C

★ Size: L34.3×W34.3×H38.5mm

★ Excellent deviation stability, good environmental performance (shock, vibration and temperature)

▶ APPLICATION

★ Medical equipment

★ Large machinery, engines

★ Automobile

★ Crash records, fatigue monitoring and prediction

★ Bridge

★ Low-frequency vibration and automatic monitoring

★ Road roller

★ Wind power generation

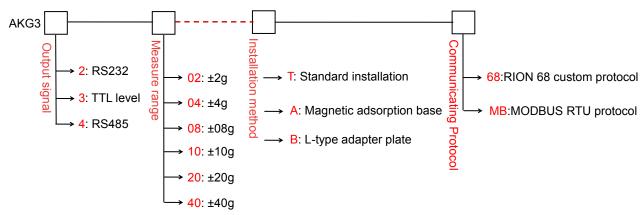
★ Output signal: RS232; RS485; TTL

★ Storage temperature: -40°C ~ +85°C

★ Impact resistance: 2000G

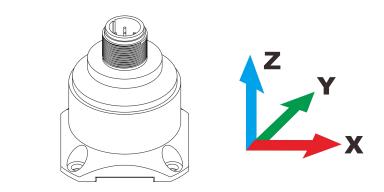
★ Traffic system monitoring, roadbed analysis and high-speed railway fault detection

▶ PERFORMANCE

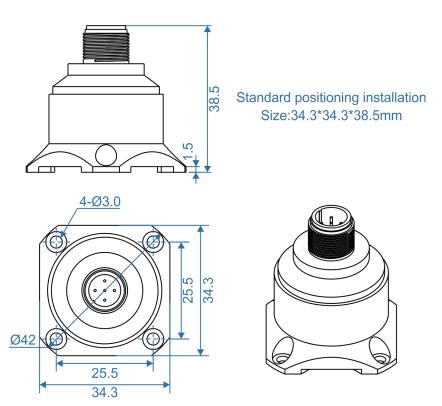

AKG392 PARAMETERS						UNIT	
Range	±2	±4	±8	±10	±20	±40	g
Bias calibration	<1	<1	<1	<1	<1	<1	mg
Measure axis	X,Y,Z	X,Y,Z	X,Y,Z	X,Y,Z	X,Y,Z	X,Y,Z	axis
Power on/off repeatability	<2	<2	<2	<2	<2	<2	mg(max)
Bias temperature coefficient	0.15	0.15	0.15	0.75	0.75	0.75	%/℃(typical)
Resolution/threshold (@ 1Hz)	< 1	< 1	< 1	< 1	< 1	< 1	mg(max)
Non-linearity	<0.5	<0.8	<1	<1	<1	<1	% FS(max)
Bandwidth (3DB)	500	500	500	500	500	500	Hz
Cross axis sensitivity	1	1	1	2	2	2	%
Transverse vibration sensitivity ratio	1	1	2	5	5	5	%
Resonance frequency	2.4	2.4	2.4	5.5	5.5	5.5	kHz
Output rate	5Hz、10Hz、25Hz、50Hz、100Hz、200Hz、500Hz、1000Hz						
Output Interface			R	S232/RS48	5/TTL		
Protocol		RION	N 68 protoc	ol and MOI	DBUS RTU	J protocol	
Reliability			MIL-H	HDBK-217	, Grade 2		
Impact resistance		100g	g@11ms, 3	Axial Direc	tion (Half	Sinusoid)	
Recovery Time		<1ms	s(1000g, 1/2	2 sin 1ms,	Impact on	the i-axis)	
Vibration	20g rms,2	0~2000Hz	(Random	noise, o, p,	i acts on e	each axis f	or 30 minutes)
Input (VDD_VSS)				9~36 VD	С		
Operating current consumption	<60mA @ 12 VDC						
Connector	Industry standard M12 connector						
Weight	Product net weight: 82g, Magnetic base: 48g, L-shaped adapter plate 20g						
Size			Product stic adsorpt shaped ada		ze: 34.23*;	34.23*6mn	n

▶ VIBRATION PARAMETER INDEX

The product's vibration frequency, speed, and displacement are derived from data analysis, where frequency is the main frequency of the current object vibration frequency, speed is the maximum vibration speed, and displacement is the maximum amplitude value of the object vibration. Because of the irregularity of the object vibration, the data is only used reference.

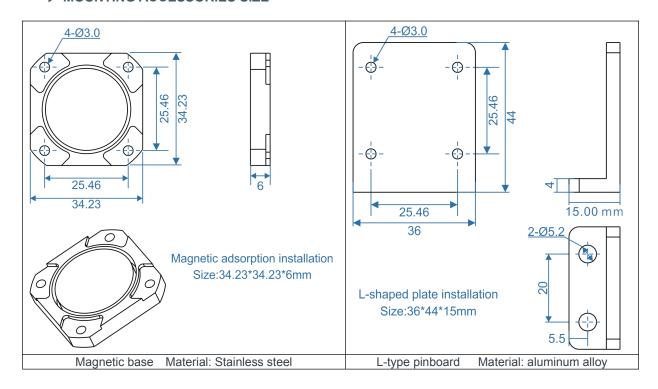

INDEX	VALUE	UNIT
Acceleration	2,4,8,10,20,40	g
Speed	Vibration speed	m/s
Amplitude	Vibration amplitude value	m
Frequency	0~500	Hz
Frequency resolution	4	Hz

▶ ORDER INSTRUCTION

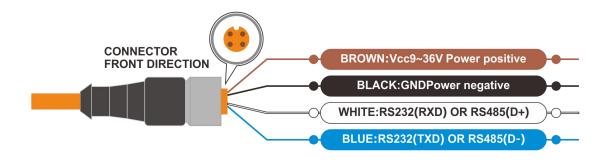


E.g: AKG392-02-T-68: RS232 output / ±2g measure range / standard installation / RION 68 protocol.

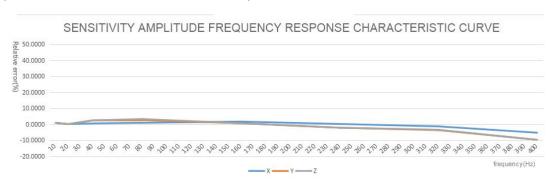
▶ MEASURE DIRECTION



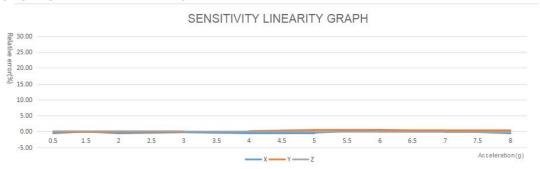
▶ SIZE


olnclinometer ∘Digital Compass ∘Digital Inclinometer ∘Accelerometer ∘Gyro ∘North Finder ∘INS&IMU RION TECHNOLOGY SINCE2008 · Attitude & Position Solution Provider

▶ MOUNTING ACCESSORIES SIZE


▶ CONNECTION

THR COL FUNC	BLACK	WHITE	BLUE	BROWN
READ)LOR CTION	GND	RS232(RXD)/ RS485(D+)	RS232(TXD)/ RS485(D-)	Vcc 9 ~ 36V


► SENSITIVITY AMPLITUDE-FREQUENCY RESPONSE CHARACTERISTIC CURVE

(reference conditions: f=20.000Hz, a=2.000G)

Reference diagram of measuring range ±8G

SENSITIVITY LINEARITY GRAPH

▶ COMMUNICATION PROTOCOL

The product includes 68 protocol and MODBUS RTU two protocols. The default configuration parameters of the protocol are as follows:

PROTOCOL	RION 68 PROTOCOL	MODBUS-RTU
Address code	0	1
Broadcast address	255	0
Serial port baud rate	9600	9600
Parity bit	No parity	Even parity
Serial port start bit	1 bit	1 bit
Serial port data length	8 bits	8 bits
Serial port stop bit	1 bit	1 bit
Output mode	Question and answer	Question and answer
Data Format	Data format	Data format
Data check method	Checksum	CRC16

RION 68 protocol and MODBUS protocol mutual switching method:

Open the serial port debugging assistant, select the baud rate 115200, no parity, stop bit 1, the connection port number, make the host computer send hexadecimal 0xAA regularly for every 10ms. Power on the product and reply "RION" or "MRTU" to indicate that the change to the corresponding protocol is successful. After the switch is successful, the parameters are all the above default parameters.

▶ AUTOMATICALLY OUTPUT DATA

This output is related to the automatic output mode command. When the corresponding BIT bit is set, it will be output. The lower the BIT, the higher the data content. That is, all content output is sorted from left to right as: acceleration|frequency|speed|amplitude|temperature. for example:

68 protocol: the automatic output item is 1011H, then the automatic output data is: acceleration|frequency|amplitude;

Modbus protocol: the automatic output item is 9001H, then the automatic output data is: acceleration|amplitude|temperature.

BIT0	BIT1	BIT2	BIT3
Accelerometer	-	-	-
BIT4	BIT5	BIT6	BIT7
frequency	-	-	-
BIT8	BIT9	BIT10	BIT11
Speed	-	-	-
BIT12	BIT13	BIT14	BIT15
Amplitude	-	-	Temperature

The following table describes the relationship between output rate, data content and baud rate, please calculate and set reasonably according to the parameters.

Fre (HZ)	0	5	10	25	50	100	200	500	1000	300	400
							Auto out	out is inv	alid, only	y the	
Remark		Auto output is valid					accelerat	ion data	is outpu	ıt, high b	oaud
							115200/2	:30400 i	s recomr	nended	to use

▶ RION 68 COMMUNICATION PROTOCOL (DEFAULT PROTOCOL)

Note: Please read the following items carefully before use:

- 1) All setting operations will not be saved after power off, and the setting of the command issued will be effective immediately. If it needs to be saved, a save command needs to be issued. The operation is: send the setting command -> return successfully, the setting takes effect -> send the save command -> return successfully, the setting is saved.
- 2) Please note that the auto output rate of the product is affected by the data length and baud rate, please calculate and set a reasonable baud rate by yourself.
- 3) The 68 protocol specifies the broadcast address----255. The sensor can also accept the content of the broadcast address, but will never reply. Therefore, the broadcast address 255 can be used for the following purposes, for reference only.
- 1. Set the addresses of all the acceleration sensors of this model mounted on the bus to a certain address.
- 2. Set all the acceleration sensors of this model mounted on the bus to relative/absolute zero point.
- 3. Test the sensor of this type on the entire bus, that is, the host sends a 0 address to the bus to inquire about the acceleration command, and the communication indicator can flash, that is, the communication is normal.
- 4) Flashes once every 1 second when normal communication.

1.DATA FRAME FORMAT: (8 bits date , 1 bit stop , No check , Default baud rate 9600)

Identifier	Date Length	Address code	Command	Date domain	Check sum
(1byte)	(1byte)	(1byte)	word(1byte)		(1byte)
0x68					

Default communication parameters: address 0, baud rate 9600, 1 start bit, 8 data, no parity, 1 stop bit; Effective setting address: 0~254;

Identifier: fixed as 0x68;

Data length: the length from data length to checksum (including checksum);

Data field: according to the different content and length of the command word changes accordingly; Checksum: The sum of data length, address code, command word and data field, regardless of carry, that is, Sum&0xFF.

2.command word analysis

Command	Meaning/Example	Description
0X01	Read X axis acceleration command. E.g.: 68 04 00 01 05	Data field (0byte) No data field command
0X02	Read Y axis acceleration command. E.g.: 68 04 00 02 06	Data field (0byte) No data field command
0X03	Read Z axis acceleration command. E.g.: 68 04 00 03 07	Data field (0byte) No data field command
0X04	Read all 3 axes acceleration command. E.g.: 68 04 00 04 08	Data field (0byte) No data field command
0X84	Sensor reply E.g.: 68 0D 00 84 00 20 10 10 40 00 05 05 00 1B	Data field (9byte) AA AB BB CC CD DD EE EF FF AA AB BB: 3 characters represent the X axis. CC CD DD: 3 characters represent the Y axis. EE EF FF: 3 characters represent the Z axis. Acceleration format is the same analytical method as X/Y/Z axis. In the example on the left, the acceleration is: X axis 02.010g, Y axis -04.000g, Z axis: +50.500g. 00 20 10 The red three bytes are the X-axis return acceleration value, which is the compressed BCD code. The high bit 0 of the first byte is the sign bit (0 is positive, 1 is negative) 02 is a two-digit integer value, and 010 is a three-digit decimal value. The analysis method for other axis data is the same, and the acceleration is analyzed as +02.010g. 10 40 00 The three blue bytes are the return angle value of Y axis, and the analysis method is the same as that of X axis. 05 05 00 The three green bytes are the Z-axis acceleration, and the analysis method is the same as the X-axis acceleration. 1B: Checksum, the hexadecimal sum of all data, without prefix 68.
0X15	Read 3 axes vibration frequency data E.g.: 68 04 00 15 19	Data field (0byte) No data field command
0x95	68 0A 00 95 00 04 00 00 00 02 A5	Data field (6byte)
		Signed 16-bit integer , big endian , coefficient 0.1 E.g : X axis : 0004H = 4*0.1 = 0.4HZ
0X16	Read 3 axes vibration speed data E.g.: 68 04 00 16 1A	Data field (0byte) No data field command
0x96	68 10 00 96 00 06 3F 85 00 05 5C F8 00 00 00 00 C9	Data field (6byte) Signed 32-bit integer , big endian , coefficient 0.000001 E.g : X axis : 00063F85H = 409,477*0. 000001 = 0.409,477m/s

0X17	Read triaxial vibration amplitude data E.g.: 68 04 00 17 1B	Data field (0byte) No data field command
0x97	68 10 00 97 00 02 CF 1A 00 01 CC 67 00	Data field (6byte)
	2E 04 32 2A	Signed 32-bit integer , big endian , coefficient 0.0000001 E.g : X axis : 0002CF1A H = 184,090 *0.0000001 = 0.0184,090m
0X18	Read acceleration, vibration frequency, vibration speed, Vibration amplitude, temperature data E.g.: 68 04 00 18 1C	Data field (0byte) No data field command
0X98	Sensor reply E.g.: 68 2D 00 98 10 00 83 00 00 17 00 09 04 00 29 00 24 00 29 00 09 3A 8C 00 03 AD A7 00 04 99 6E 00 03 89 F7 00 01 99 3D 00 01 C3 82 0D BC 8C	Data field (39byte) Blue is X, Y, Z acceleration data in sequence, the unit is g, the data analysis is consistent with the 04H command analysis method Green is X, Y, Z frequency data in sequence, the unit is Hz, the data analysis method is consistent with the 15H command analysis method Orange is X, Y, Z speed data in sequence, the unit is m/s, the data analysis method is consistent with the 16H command analysis method Red is X, Y, Z amplitude data in sequence, the unit is m, the data analysis method is consistent with the 17H command analysis method Purple is the temperature data, the unit is °C, and the coefficient is 0.01. The data analysis method is consistent with the 15H command analysis method.
0X0B	Set communication rate E.g.: 68 05 00 0B 03 13	Data field (1byte) Baud rate: Default value: 9600 00 means 2400
0X8B	Sensor reply command E.g.: 68 05 00 8B 00 90	Data field (1byte) The number in the data field indicates the result of the sensor response: 00 Success FF Failure
ОХОС	Set sensor output mode. Q&A mode: The host computer needs to send a read acceleration command before the sensor responds to the relative acceleration. Automatic output mode: After the sensor is powered on, it will automatically output X, Y, Z acceleration, and the output frequency is based on the set value. If high frequency output is required, please set the baud rate to 115200. (This function can be memory when power off) E.g.: 68 05 00 0C 00 11	Data field (1byte) factory default value: 00 00 response system 01 5Hz automatic output mode 02 10Hz automatic output mode 03 25Hz automatic output mode 04 50Hz automatic output mode 05 100Hz automatic output mode 06 200Hz automatic output mode 07 500Hz automatic output mode (the baud rate is 115200, 230400) 08 1000Hz automatic output mode (230400 baud rate) 09 300Hz automatic output mode 10 400Hz automatic output mode
0X8C	Sensor reply command E.g.: 68 05 00 8C 00 91	Data field (1byte) The number in the data field indicates the result of the sensor response: 00 Success FF Failure
0X1B	Set the sampling frequency E.g: 68 06 00 1B 00 01 12	Data field (1byte) , default 00 00

		04 250HZ Auto-output mode 05 125HZ Auto-output mode
0X0B	Sensor reply command E.g: 68 05 00 8B 00 90	The number in the data field indicates the result of the sensor response: 00 Success FF Failure
0X0F	Set address command The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, for example RS485: each sensor needs to be set to a different address to achieve separate control and response acceleration. 2. If the new address is successfully changed, the address code in all subsequent commands and response packets must be changed to the new address code after the change to be effective, or the sensor will not respond to the command. E.g.: 68 05 00 0F 01 15 Set the address as 01. 68 05 FF 0F 00 13 Use the general address to reset the address to 00	Data field (1byte) XX address, the address ranges from 00 to EF; Note: All products have a common address: FF
0X8F	Sensor reply command E.g.: 68 05 00 8F 00 94	Data field (1byte), The number in the data field indicates the result of the sensor response: 00 Success FF Failure
0X53	Set save instruction 68 04 00 53 57	
0XD3	Set save command reply 68 05 00 D3 00 57	Data field (0 BYTE) The number in the data field indicates the result of the sensor response 00 Success FF Failure
0X1F	Read software version number instruction 68 04 00 1F 03	
	Read the software version reply 68 14 00 9F 41 4B 47 33 39 32 54 5F 56 32 31 30 37 30 38 41 A0	Data field (BYTE) The number in the data field indicates the result of the sensor response AKG392T_V210708A

Setting instructions and procedures

All setting operations are not saved when the power is turned off. The setting is effective immediately o nce comand sent. If you need to save setting command after power off, you need to issue a save comm and. The operation is: Issue the setting command -> return success, the setting takes effect -> issue the save command -> return success, the setting is saved.

▶ MODBUS PROTOCOL

MODBUS uses RTU mode, 'big-Endian' represents addresses and data items, adopts CRC16 check data, standard error code. Support 0x03 to read holding registers and 0x06 to write single registers.

Note: please read the following items carefully before use:

1) Because the MODBUS protocol stipulates that the time between two data frames should be at least 3.5 bytes (for example, at a baud rate of 9600, the time is $3.5 \times (1/9600) \times 11 = 0.004s$). But in order to leave enough margin, this sensor increases the time to 10ms, so please leave at least 10ms time interval between each data frame. Please note that the automatic output of the product does not consider the T3.5 time.

The host sends a command-10ms idle-the slave responds to the command-10ms idle-the host sends a command...

- 2) The MODBUS protocol stipulates the relevant content of the broadcast address ---- 0. This sensor can also accept the content of the broadcast address, but it will not reply. So broadcast address 0 can be used for the following purposes, for reference only.
- 1. Set the addresses of all accelerometers of this model mounted on the bus to a certain address.
- 2. Set all the accelerometers of this model mounted on the bus to relative/absolute zero.
- 3. Test the sensor of this model on the entire bus, that is, the host sends a 0 address query acceleration command to the bus, and the communication indicator can flash if the communication is normal.
- 3) In order to improve the reliability of the system, setting the address command and setting the baud rate, these two commands must be sent twice in a row to be effective. "Send twice in a row" means that the two transmissions are successful (the slave responds every time), and the two questions and answers must be consecutive before and after. The setting process is as follows:

Send the setting address command-Waiting for the successful setting command sent by the slave-(No other commands can appear) Send the setting address command again-Waiting for the successful setting command sent by the slave-Successful modification

1.Data frame format:

Default communication parameters: address 1, baud rate 9600, 1 start bit, 8 data, even parity, 1 stop bit; Effective setting address: 1~247;

CRC check: The range is the check of all bytes before the CRC field, using 16-bit CRC check.

2.Data types:

Туре	Description	
short	Unsigned 16-bit integer	
ushort	Unsigned 32-bit integer	
int	Signed 16-bit integer	
uint	Signed 32-bit integer	
R	Read only	

3.Register address table:

Register address	Data content	Data type	Accuracy	Unit
40002	Temperature	short (R)	0.001	$^{\circ}\! \mathbb{C}$
40003	X acceleration	int (R)	0.001	g
40005	Y acceleration	int (R)	0.001	g
40007	Z acceleration	int (R)	0.001	g
40010	X vibration frequency	short (R)	0. 1	hz
40011	Y vibration frequency	short (R)	0. 1	hz
40012	Z vibration frequency	short (R)	0. 1	hz
40013	X vibration speed	int (R)	0.000001	m/s
40015	Y vibration speed	int (R)	0.000001	m/s
40017	Z vibration speed	int (R)	0.000001	m/s
40019	X vibration amplitude	int (R)	0. 0000001	m
40021	Y vibration amplitude	int (R)	0. 0000001	m
40023	Z vibration amplitude	int (R)	0. 0000001	m

Data analysis method: data value = register data * coefficient.

4.Example: Read X axis data, Modbus function code 03H

Host query comma	and	Slave response			
Sensor address	01H	Sensor address		01H	
Function code	03H	Function code		03H	
Register	00H	Data length		0CH	
address	02H		00H		
Dogister length	00H	Data word 1 4 bytes	00H	V acceleration	
Register length	Data word 1-4 bytes		00H	X acceleration	
CRC	6408H		24H		
			FFH		
		Data word F 9 bytes	FFH	Y vibration	
		Data word 5-8 bytes	FFH	speed	
			F0H		
			00H		
		Data word 0.12 butca	00H	Z vibration	
		Data word 9-12 bytes	03H	speed	
			E8H		
		CRC_L	2	2CH	
		CRC_H		DEH	

Take the above data frame as an example: the conversion process of acceleration is as follows:

- 1) Get the current data, X-axis acceleration is 00000002H, Y-axis acceleration is FFFFFFD H, Z-axis acceleration is 000003E8H. Then convert the above data to decimal.
- 2) Multiply by the accuracy to get the data X-axis acceleration is 2*0.001=0.002g, Y-axis acceleration is -15*0.001=-0.015g, Z-axis acceleration is 1000*0.001=1g.
- olnclinometer ∘Digital Compass ∘Digital Inclinometer ∘Accelerometer ∘Gyro ∘North Finder ∘INS&IMU RION TECHNOLOGY SINCE2008 · Attitude & Position Solution Provider

5.Set Sensor address:

Set sensor address code	command	Slave response					
Sensor address	01H	Sensor address	01H				
Function code	06H	Function code	06H				
Address	00H	Dogistor address	00H				
Address	11H	Register address	11H				
Sensor new address	00H	Sensor new address	00H				
Sensor new address	04H	Sensor new address	04H				
CRC	D80C	CRC	D80C				

Commands must be sent twice consecutively to be effective.

Example of setting sensor address command												
Host send			01H	06H	00H	11H	00H	04H	D8H	0CH		
Slave respo	Slave response											
01H 06H 00H 11H 00H 04H D8 H 0CH												

Note: 0011H is the register address, which controls the sensor address. In the above example, the address of the sensor has been changed to 0004H, and the last two bytes are the CRC checksum.

6.Set the baud rate of the sensor: (The factory default is 9600bps)

	•	• •	
Set sensor baud rate co	mmand	Slave response	
Sensor address	01H	Sensor address	01H
Function code	06H	Function code	06H
Address	00H	Degister address	00H
Address	12H	Register address	12H
Sensor baud rate	00H	Sensor baud rate	00H
Sensor baud rate	XX	Sensor baud rate	XX
CRC	CRC LH	CRC	CRC LH
XX · A0H·4800 A1H	·9600 A2H·19200 A	3H:38400 A4H:115200	A4H·230400

Example of	sensor baud	rate setting:								
Host send			01H	06H	00H	12H	00H	A2H	A8H	76H
Slave respo	onse									
01H	01H 06H 00H			1	00 H	A2	2H	A8H		76H

Note: 0012H is the register address, which controls the baud rate of the sensor. In the above example, the baud rate of the sensor is set to 19200, and the last two bytes are the CRC checksum.

7.Set the parity bit of the sensor serial port: (factory default is even parity)

Set parity bit command		Slave response					
Sensor address	01H	Sensor address	01H				
Function code	06H	Function code	06H				
Pogistor address	00H	Dogistor address	00H				
Register address	09H	Register address	09H				
Sensor change parity	00H	Sensor change parity	00H				
bit	01H	bit	01H				
CRC	9808	CRC	9808				

Application example of setting zero command:												
Host send			01 H	06 H	00 H	09 H	00 H	01H	98H	08H		
Slave respons	Slave response											
01 H	06 H	00 H		09 H	00	Н	01H	98	Н	08H		

The above example is to set the byte format to: a start bit + 8 data bits no parity + 1 stop bit

Valid after re-powering on. The factory default is one start bit + 8 data bits even parity + 1 stop bit

Note: 0009 is the register address, this register controls the character format of sensor communication.

0000H: a start bit + 8 data bits even parity + 1 stop bit

0001H: A start bit + 8 data bits without parity + 1 stop bit

8 . Set sensor output mode: (factory default 0HZ)

Set sensor output mode	command:	Slave response:					
Sensor address	01H	Sensor address	01H				
function code	06H	function code	06H				
address	00H	register address	00H				
address	13H	register address	13H				
The output rate of the	00H	The output rate of the	00H				
sensor	XX	sensor	XX				
CRC	CRC LH	CRC	CRC LH				

The following table shows the valid values of data field XX :

frequency (HZ)	0	5	10	25	50	100	200	500	1000	300	400
XX	00H	01H	02H	03H	04H	05H	06H	07H	08H	09H	0AH

Application example of set sensor address command :												
Host send			01H	06H	00H	13H 00H A2H A8H 7						
Slave respo	Slave response											
01H	06H	00H	13H	1	00H	02	2H	A8H		76H		

Note: 0013H is the register address, this register controls the sensor output mode. In the above example, the output rate of the sensor is set to 10HZ, the last two bytes are the CRC checksum, and the automatic output is three-axis acceleration data.

9.Set sensor auto-output data command :

Set the sensor to auton	natically output the data	Slave response:					
item command:							
Sensor address	01H	Sensor address	01H				
function code	06H	function code	06H				
address	00H	register address	00H				
auuless	00H	register address	00H				
Automatic outputs from	91H	Automatic outputs from	91H				
sensors	11H	sensors	11H				
CRC	CRC LH	CRC	CRC LH				

The command must be sent twice in a row to be effective

Application	Application example of set sensor address command :												
Host send			01H	06H	00H	00H)H 91H 1		D8H	0CH			
Slave respo	Slave response												
01H													

Note: 0000H is the register address, which controls the sensor to automatically output data items. In the above example, the output item of the sensor is set to 9111H, and the last two bytes are the CRC checksum.

10.Read sensor automatic output data command:

The command to read the sensor automatic Slave response: output data item:								
Sensor address	01H	Sensor address	01H					
function code	03H	function code	03H					
register address	00H	length	02H					
	00H		91H					
	00H	register data	11H					
	01H							
CRC	CRC LH	CRC CRC LH						

The command must be sent twice in a row to be effective

Application example of set sensor address command :										
Host send			01H	03H	00H	00H	00H	01H	84H	0AH
Slave response										
01H	03H	02H	91H	1	11H	15	5H	D8		

Note: 0000H is the register address, which controls the sensor to automatically output data items. In the above example, the output item of the read sensor is 9111H, and the last two bytes are the CRC checksum.

11. Set sensor sampling frequency:

Set sensor auto-output d	ata command: :	Slave response:				
Sensor address	01H	Sensor address	01H			
Function code 06H		Function code	06H			
addraga	00H	register address	00H			
address	14H	register address	14H			
Sensor sampling	00H	Sensor sampling	00H			
frequency:	XXH	frequency:	XXH			
CRC	CRC LH	CRC	CRC LH			

The following table shows the valid values of data field XX:

sampling (HZ)	4000	2000	1000	500	250	125
XX	0	1	2	3	4	5

The command must be sent twice in a row to be effective

Application	Application example of set sensor address command:									
Host send			01H	06H	00H	14H	00H	01H	08H	04H
Slave response										
01H	06H	00H	14⊦	ł	00H	01	01H			04H

Note: 0014H is the register address, this register controls the sampling frequency of the sensor .

In the above example, set the sampling frequency of the sensor: 2000HZ, and the last two bytes are the CRC checksum.

Add: Block 1, COFCO(FUAN) Robotics Industrial Park, Da Yang Road No. 90, Fuyong

Distict, Shenzhen City, China

Tel: (86) 755 29657137 /(86) 755 29761269

Fax: (86) 755 2912 3494

Email: sales@rion-tech.net

Web: www.rionsystem.com/www.rion-tech.net